Creating Mobile Emission Reduction Credits

Presenter:

Daniel Sloan, President & CEO

Emission Reduction Specialists

- To service the Emission Credit needs of our clients, Emission Credit Brokers (ECB) formed a new company called Emission Reduction Specialists. (ERS)
- ERS is completely focused on developing projects that create Mobile Emission Credits.
- ERS has strategic alliances with companies that have technologies, which reduce Mobile Emissions and Emissions from stationary generators.

Mobile Source Emissions

- In most cities, mobile source emissions make up more than half of the total NOx emissions.
- Even thought Mobile Emissions make up the majority of the pollution in a city, it has been prohibitive to abate them due to the high cost of technology.
- SCR/SNCR technology has now made it cost effective to create emissions credits.

Technologies Available for Creating Mobile Emission Credits

- Electric and Fuel-cell Vehicles
- Natural Gas and dual-fueled vehicles
- Catalytic Converters
- SCR/SNCR

SCR/SNCR Technology

- NOx Master by KleenAir Systems
- NOx & PM emission control retrofit system for "mobile source" diesel vehicles and equipment
- SCR/SNCR type retrofit system is based upon the use of ammonia as a reductant being diffused at the exhaust manifold (SNCR).
- This reduces NOx and combines an electronic controlled diffusion system together with a specially formulated Selective Catalytic Reduction (SCR) component.

SCR/SNCR Technology

- The result is a more efficient combination noncatalytic (SNCR) and catalytic (SCR) NOx reduction. This unique aspect widens the reactive temperature range between NOx and ammonia from 250 -1,800° Fahrenheit.
- The NOxMaster System test prototype has demonstrated its effectiveness in reducing the nitrogen oxide contained in exhaust emissions by 70% to 90%.

City of Houston Study Test Results for NOx Reducing System Vehicle: **Gradall G3WD**

Engine:	Cummins 6BTA 5.9	Liter Diesel				
Test	Fuel		CO	CO2	NOx	THC
Date	Туре	Vehicle Emission Configuration	g/min	g/min	g/min	g/min

Original

Original

Original

Original

Vehicle Emission Configuration

(SCR/SNCR Only)

(SCR/SNCR Only)

(SCR/SNCR Only)

(SCR/SNCR Only)

Vehicle Emission Configuration

(SCR/SNCR + PM Trap)

(SCR/SNCR + PM Trap)

(SCR/SNCR + PM Trap)

(SCR/SNCR + PM Trap)

(value) - Represents Percentage Difference With Respect To Vehicle's Original Configuration

1.02

1.08

1.09

1.06

CO

g/min

0.24

0.23

0.27

0.25

-76.6

CO

a/min

0.19

0.17

0.14

0.17

-84.3

923

919

924

922

CO₂

g/min

942

936

938

939

1.81

CO₂

a/min

936

933

923

931

0.94

4.96

4.85

4.91

4.91

NOx

g/min

1.08

1.06

1.07

1.07

-78.2

NOx

a/min

0.92

0.88

0.9

0.9

-81.6

Oct 26 2001 - 1

Oct 26 2001 - 2

Oct 26 2001 - 3

Average

Test

Date

Oct 27 2001 - 1

Oct 27 2001 - 2

Oct 27 2001 - 3

Average

Test

Date

Oct 26 2001 - 1

Oct 26 2001 - 2

Oct 26 2001 - 3

Average

Baseline Diesel

Baseline Diesel

Baseline Diesel

Baseline Diesel

Fuel

Type

Baseline Diesel

Baseline Diesel

Baseline Diesel

Baseline Diesel

Fuel

Type

Baseline Diesel

Baseline Diesel

Baseline Diesel

Baseline Diesel

0.44

0.43

0.43

0.43

THC

g/min

0.16

0.14

0.15

0.15

THC

a/min

80.0

0.06

0.05

0.06

-86

-66

TPM

g/min

0.7

0.693

0.692

0.695

TPM

g/min

0.503

0.536

0.489

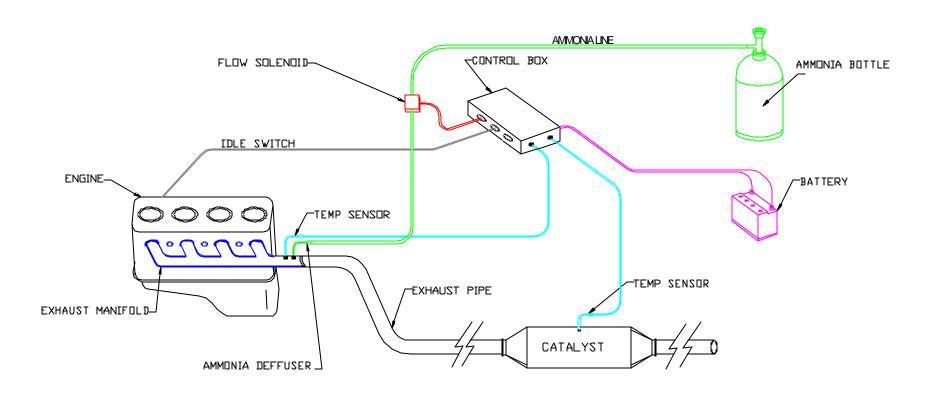
0.509

TPM

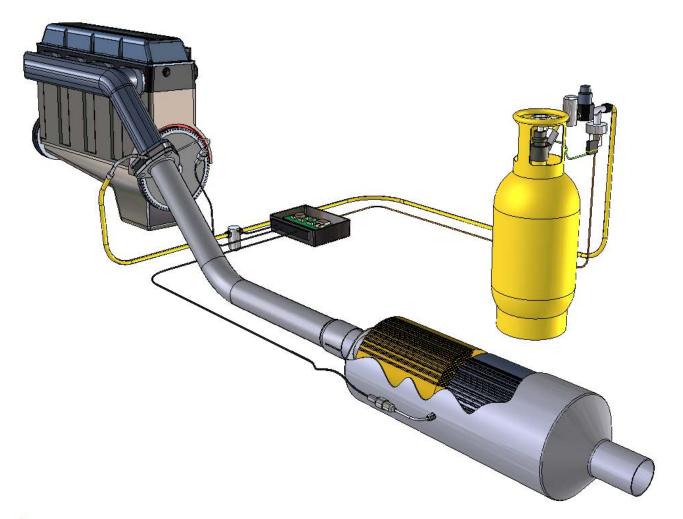
a/min

0.057

0.056


0.055

0.056


-91.9

-26.7

The NOxMaster System

The NOxMaster System

Applications for NOx Master Technology

- Heavy Duty Vehicles (Garbage trucks, dump trucks, cement mixers and 18 wheelers)
- Buses, delivery trucks and construction equipment
- Marine (Tug boats, barges and ferries)
- Stationary Diesel Generators up to 2 MW

Sponsoring Projects that create Mobile Emission Credits

- Identify companies in an area that have large fleets that are not planning to retrofit on their own.
- Run economics of project to ensure that the money spent will yield enough emission credits to justify the cost.
- Negotiate an agreement to pay for the cost of retrofitting the fleet in exchange for the emission credits.

Co-sponsoring Projects

- Opportunity for interested companies to team up with ERS to develop Mobile Source creation projects.
- Split project costs and the credits that are created.
- ERS has \$5,000,000 committed for projects in 2003.
- Emission Credit Brokers can sell excess credits from project.
- ERS has a reduced brokerage agreement with Emission Credit Brokers.

Engine Serial Number (Starbo	8VA 359282	12VAR03129	8VA 13071*	TBD	TBD	TBD	
Engine Horsepower Rating (R	253 (1760)	382 (1760)	253 (1760)	253 (1760)	382 (1760)	253 (1760)	
Number of engines onboard		2	2	2	2	2	3
Annual Fuel Consumption gals/year ea.		20,181	23,647	14,134	15,869	16,233	22,090
Baseline NOx Emissions	g/bhp-hr ea.	36.6	24.6	36.6	36.6	24.6	36.6
Reduced NOx Emissions	g/bhp-hr ea.	4.019	4.019	4.019	4.019	4.019	4.019
% Operated in L.A. Harbor		100%	100%	100%	99%	50%	100%
% Operated in SC Basin	1 = 100%	1	1	1	1	1	1
Energy Consumption Factor	hp-hr/gal	14.43	14.43	14.43	14.43	14.43	14.43
Estimated NOx Reduction	tons/year	10.45	7.73	7.32	8.22	5.31	11.44
Retrofit with		NOx Master	NOx Master	NOx Master	NOx Master	NOx Master	NOx Master
Total Capital Cost		\$100,000.00	\$110,000.00	\$100,000.00	\$100,000.00	\$110,000.00	\$150,000.00
Incremental Project Cost		\$100,000.00	\$110,000.00	\$100,000.00	\$100,000.00	\$110,000.00	\$150,000.00
Capital Recovery Factor	0.1	0.1	0.1	0.1	0.1	0.1	
Cost Effectiveness	\$/ton	\$9,570.01	\$14,222.29	\$13,664.38	\$12,170.42	\$20,717.96	\$13,114.47
Fuel Consumption - 100%		17.53 gal/hr	26.47 gal/hr				
Fuel Consumption - 75%		13.15 gal/hr	19.85 gal/hr			Average \$/Ton	\$13,849
Fuel Consumption - 50%		8.77 gal/hr	13.24 gal/hr				
Nox Emissions		23.1 g/bhp-hr	24.6 g/bhp-hr			Yearly NOx Emissio	ns Reduction
						Tons per Year	112.37
Fuel Consumption - 100%		14.19 gal/hr	17.34 gal/hr				
Fuel Consumption - 75%		10.64 gal/hr	13 gal/hr				
Fuel Consumption - 50%		7.09 gal/hr	8.67 gal/hr				
Nox Emissions		4.019 g/bhp-hr	4.019 g/bhp-hr				
Capitol Recovery Factor based of		<u> </u>					
Emission data for the barges are	based on testing	done on one of e	ach style engine a	nd carried over to	o the rest.		

Using Mobile Emission Credits

- In most regions, Mobile Source credits can be used at stationary sources.
- In Texas, Mobile Discrete Emission Reduction Credits (MDERCs) can be used for stationary sources at a 1-1 ratio.
- In South Coast Mobile Credits are converted into Reclaim Credits.

Summary

- Currently the demand for Emission Credits exceeds the supply.
- By using SCR/SNCR technologies (NOxMaster), it is now economically feasible to create Mobile Source Emission Credits.
- By creating credits you mitigate risk by not being subject to price spikes in the market. (July 2000 NOx RTC credits traded at \$124,000 a ton)
- Most projects will yield a high return on investment!!

Contact Information

Daniel Sloan

Phone: 832-200-9010

Email: dsloan@emissioncreditbrokers.com

dsloan@emissionspecialists.com

Address: ECB Center

4916 Main Street

Houston, Texas 77002

